Writtle University College and ARU have merged. Writtle’s full range of college, degree, postgraduate and short courses will still be delivered on the Writtle campus. See our guide to finding Writtle information on this site.

Biology PhD project opportunities

Find out more about self-funded PhD projects in areas where we already have supervisors active and engaged in the research topic in our School of Life Sciences.

Research Group

Applied Ecology Research Group (AERG)

Proposed supervisory team

Dr Alvin Helden

Several other members of Biology staff with interest in this subject area could be part of the team e.g., Dr Tom Ings, Dr Peter Brown and Dr Sarah Hart.

Theme

Global Change Ecology

Summary of the research project

Needingworth is an active gravel and sand extraction quarry site near St. Ives, Cambridgeshire run by the Hanson/Heidelberg Cement Group. Following the mineral extraction process the land is being restored to form what will be one of the UK’s largest reedbed system. This is occurring sequentially in a series of blocks, which are then to be given over to management by the RSPB. The main focus of the site has been wetlands and the birds that they support. However, as my recent Quarry Life project has shown, additional biodiversity rich habitat, particularly grassland, have been created. While the restored site clearly has importance for biodiversity, it would be very informative for the organisations directly involved, as well as local and national conservation organisations, and the wider community, to be able to quantify the contribution of the site to local biodiversity. In other words, what is the biodiversity footprint of the site? How much is biodiversity enhanced and is there a positive spill-over effect to areas adjacent to the site? The project would aim to measure the invertebrate and other biodiversity of the site and that of equivalent habitats in the surrounding landscape. The information collected, together with data published elsewhere, would be used to parameterise a landscape model that could be used to help inform decisions about future restoration.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Applied Ecology Research Group (AERG)

Proposed supervisory team

Dr Helen Wheeler

Theme

Climate change, species distribution

Summary of the research project

Climate change is rapidly altering ecosystems and affecting people’s way of life, exerting effects from the individual to biome scale. Since 1500, 322 terrestrial vertebrate species have gone extinct and recorded populations show a 25% decline in abundance. Rapid rates of species decline, extinction and range contraction provide increasing evidence that we are entering a sixth mass extinction period induced by human activities, which is likely to compromise the functioning of ecosystems and affect the wellbeing of humans. These risks are especially prominent in the Arctic, where rapid warming, changing human-related infrastructure, human activity, human extraction of biological resources and contaminants affect animals and in turn the people that depend on animals for socio-economic wellbeing including food and culture.

This PhD will examine how different drivers of change affect wildlife species and ecological communities with arctic distributions. You will examine how species’ responses to climate change varies across their distribution and how communities are responding to arctic change across a range of physical and anthropogenic drivers.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Behavioural Ecology Research Group (BEEC)

Proposed supervisory team

Dr Rachael Miller (Harrison) (ARU)

Prof Stuart Marsden (Ecology Conservation, Manchester Metropolitan University)

Theme

Animal cognition, Conservation behaviour

Summary of research project

Cognition, which encompasses the mental processes behind perception, learning, decision-making and memory, underlies many animal behaviours. Behaviour is key to animal conservation, and cognition can therefore play a critical part in devising effective conservation initiatives. Despite this, cognition is largely under-utilised in conservation practices, though there are recent calls for closer integration. Conservation is critical to the survival of many threatened species in protecting against increasing changes to environments and threats like habitat degradation.

This project aims to take important strides towards developing a new research approach integrating cognition and conservation research by focussing on a little-studied, critically endangered bird species, Bali myna (Leucopsar rothschildi). Bali myna is an appropriate species selection due to its suitability, availability, threatened status, threats in the wild like poaching, and active reintroduction efforts in Bali, as well as recent successful pilot cognitive research (Miller et al., Submitted & Pre-printed: www.biorxiv.org/content/10.1101/2021.11.12.468403v1). This work involves research with Bali myna in several UK Zoos, as well as with captive and released birds in Bali through collaboration with reintroduction programmes, utilizing cognitive, behavioural, animal training and field conservation-based approaches.

The project will map the ‘cognitive tool-kit’ of Bali myna incorporating abilities likely to assist species survival in a changing world, like behavioural flexibility and social learning, and relate these cognitive aspects to fitness measures, like breeding success and body condition. Critically, these findings will then be incorporated in active conservation strategies, including informing release decisions, targeted pre-release training, and testing real outcomes with post-release monitoring to assess survival implications.

Project outcomes will be of a quality, significance and originality to make a real difference to the conservation of threatened bird species with far-reaching consequences for the survival of these wonderful birds. Furthermore, it presents an ideal opportunity to contribute to public perception and community education of species conservation. It offers the prospect of making a measurable contribution to animal conservation.

Interested candidates should contact Dr Rachael Miller (Harrison) [email protected] to discuss project ideas. Please note that this is currently a self-funded project.

Where you’ll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Applied Ecology Research Group (AERG)

Proposed supervisory team

Dr Alvin Helden

Dr Tom Ings

Theme

Smart Cities

Summary of the research project

Land management decisions made at the planning stage and in terms of on-going site management are likely to have major impacts on biodiversity. Each decision has consequences at the local site level for biodiversity, particularly for plants and invertebrates, but in turn this affects animals higher in the food chain such as birds. Although we have some understanding of this, we need to learn more about how the combined effects of local management influences biodiversity at a whole town or city scale. This project will quantify the effect of planning and management decisions on invertebrate and other biodiversity at an urban landscape scale. It will use small-scale experiments, fieldwork and published data to parameterise urban landscape models, designed to inform authorities about options for biodiversity enhancement. Ultimately the research will contribute to the development of future urban areas with improved benefits for wildlife and people.

Small-scale invertebrate sampling will be carried out, together with wider-scale habitat mapping. Sampling data will be brought together, with that from the literature, to parameterise landscape models that will enable alternative management practices to be simulated. It will help to ask questions as to what effects local management decisions will make to the biodiversity of whole urban areas. This will represent a more advanced approach to the growing field of urban biodiversity, much of which has been largely observational.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Applied Ecology Research Group (AERG)

Proposed supervisory team

Dr Helen Wheeler (AERG, Anglia Ruskin University)

Dr Davide Natalini (Global Sustainability Institute)

Theme

Environmental decision-making, restoration, rewilding

Summary of the research project

Rewilding has gained significant attention internationally as an emerging and exciting approach for restoration for sustainable ecosystems but requires stakeholder support for its successful implementation. Rewilding aims to restore interactions between different ecosystem components to create more resilient ecosystems able to withstand the more extreme perturbations expected under changing climate.

To successfully address sustainability challenges, rewilding must both promote biodiversity and meet human needs. To receive support, the policies must support stakeholder goals and values and needs and expectations of stakeholders must inform how and in what contexts we attempt rewilding. In prominent UK examples, rewilding projects have failed due to a lack of local support. Conservation conflicts, whereby stakeholders have divergent conceptions of future landscapes may undermine conservation efforts and cause them to ultimately fail.

Farmers and landowners are affected by rewilding activities near their land and face decisions about whether to engage in rewilding activities on their land. These two decisions will determine the uptake of rewilding. Rewilding has three core ecological aims: increasing food web complexity (such as through reintroducing predators and herbivores), increasing connectivity of rewilded land (to aid species dispersal) and allowing natural disturbance regimes (such as allowing periodic flooding). Rewilding aims to move to low-intervention landscapes. By reducing human intervention, we increase uncertainty of ecosystem trajectories. Policies designed to further these objectives may be seen to negatively impact landowners and farming communities and may generate behaviours which are ultimately damaging unless they are well designed. The PhD will investigate the impact of policy decisions on uptake of rewilding activities through examining stakeholder responses to environmental policies using a range of methods such as Q-methodology and agent-based modelling.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Behavioural Ecology Research Group (BEEC)

Proposed supervisory team

Dr Claudia Wascher

Theme

Cognitive abilities, Social relationships

Summary of the research project

The requirements of living in social groups, as well as forming and maintaining social relationships are hypothesized to be major drivers behind the evolution of cognitive abilities, such as attention, learning, and inhibitory control. Traditionally, the evolution of cognitive abilities in non-human animals is investigated via a comparative approach, testing cognitive performance in different species, varying in their ecology or social organisation. From these results, researchers can infer when in evolutionary history particular cognitive processes have evolved and under which ecological and social circumstances. In most cases, specific model organisms, e.g. primates, corvids, parrots, rats, pigeons are very much in focus, whereas other species are often ignored.

This project aims to investigate how social relationships shape cognitive abilities, e.g. delay of gratification, learning, in group living animals, with a specific focus on previously understudied species, e.g. birds of prey, chicken. Further, comparative studies regarding the evolution of socio-cognitive skills have also generated conflicting results. The proposed project aims at incorporating an intraspecific approach, investigating how individual variation in cognitive performance correlates with an individual’s ability to form and maintain social relationships.

The proposed project will use standardized cognitive tests, e.g. delay maintenance, reversal learning, to assess cognitive performance in different species and multiple individuals, with a special focus on repeatability in cognitive performance. The candidate will make significant advances in the field of comparative cognition.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Behavioural Ecology Research Group (BEEC)

Proposed supervisory team

Dr Jacob Dunn

Theme

Evolution, Anatomy, Geometric Morphometrics, Communication, Language

Summary of the research project

Spoken language is one of the most distinctive characteristics of our species. Yet, our understanding of the evolution of this quintessentially human trait is far from complete. The dominant approach for the last few decades has been the search for fossil evidence of variation in vocal anatomy. However, most anatomical traits associated with speech are soft tissues, which do not fossilise, making it very difficult to establish when speech first evolved. This line of enquiry has diverted attention away from alternative questions that are equally interesting and more accessible empirically. In particular, it is probably more important to ask how and why specific anatomical changes for human speech took place. These questions can be addressed by applying the “comparative model” – using data from living species to shed light on the anatomy and behaviour of extinct species and reconstruct evolutionary scenarios.

Our research focuses on the comparative anatomy of the larynx and hyoid bone (the only bone in the larynx) in mammals. Evidence suggests that there were important shifts in the size and shape of the larynx and hyoid during hominin evolution and there appears to be a correlation between the morphology of the hyoid and the presence and size of air sacs in the larynx. Air sacs are air-filled cavities which are attached to the larynx in many primates, including all non-human apes, but, intriguingly, are absent in modern humans. They are thought to play a role in loud calls and are probably not necessary for the type of quiet vocal interaction that typifies human conversation. This suggests that the evolution of the modern human hyoid is associated with the loss of air sacs and, by extension, of loud calls. Hyoids are possible to find in museum collections, and their size and shape is easy to quantify using geometric morphometric methods. Larynges are much harder to source, as soft tissues are much rarer in collections. However, over the last three years we have worked closely with collaborators in Austria and Japan to build and scan a large collection of larynges. Thus, we are uniquely positioned to carry out research into this topic.

This project would analyse the size and shape of the larynx in one or more mammalian orders to model the evolutionary process. Laboratory and desk-based approaches would be necessary, potentially including CT scanning, geometric morphometrics, analysis of histological data and phylogenetic comparative methods. However, the exact nature of the project would be open for discussion and development with the candidate – in line with their skills and interests. Interested candidates should contact Dr Jacob Dunn to discuss project ideas. Please note that this is currently a self-funded project.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Behavioural Ecology Research Group (BEEC)

Proposed supervisory team

Dr Jacob Dunn

Dr Claudia Wascher

Theme

Animal Communication

Summary of the research project

Vocal communication is fundamental to primate social behaviour. However, vocalisations vary extremely widely among primate taxa in terms of both acoustic parameters (e.g., call frequency) and the range of vocalisations different species produce (i.e., vocal repertoire). This project aims to develop a new framework to investigate the evolution of primate communication systems using interdisciplinary methods. Research will focus on two model taxa, howler monkeys (Alouatta) and colobine monkeys (Colobinae).

The project aims to: 1) describe the full variation in vocal anatomy among the study species; 2) describe the range of vocalisations produced by each species using bioacoustics methods; and 3) carry out playback experiments on selected species to understand the behavioural function of vocal signals.

The candidate will make significant advances in theoretical aspects of the evolution of animal signals, integrating statistical, field and laboratory analyses. This covers a range of expertise, including: spatial analyses, phylogenetic comparative methods, bioacoustics and anatomy/morphometrics.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.

Research Group

Applied Ecology Research Group (AERG)

Proposed supervisory team

Dr Alvin Helden

Dr Tom Ings

Several other members of Biology staff with interest in this subject area could be part of the team e.g., Dr Peter Brown and Dr Sarah Hart.

Theme

Global Change Ecology

Summary of the research project

The National Pollinator Strategy was published by the UK Government in Nov 2014, in recognition of the important economic and biological role of pollinators (Defra, 2014). Broadly speaking, its aims are to increase public awareness and scientific knowledge of UK pollinators and to take action that will reverse recent declines in their populations. One particular focus of the strategy is to modify habitat management in both urban and rural areas, to provide better foraging and nesting resources for bees and other pollinators. However the insects that act as pollinators are only part of the wider invertebrate community. There are very many other species, with different ecological roles, including those that form the vitally important ecosystem services of decomposition and pest control. This project would set out to investigate the effects of implementing the National Pollinator Strategy on theses non-target invertebrates, and in particular focus on the ecosystem services they provide. It is likely that this national strategy is beneficial to wider groups but this ought to be measured, rather than assumed. Working with landowners and managers that are implementing pollinator friendly management, the biodiversity of other invertebrates will be measured. Experiments will be set out that test rates of decomposition and natural enemy (predation and parasitism) activity. The overall aim of the project would be to use the findings to provide feedback to the National Pollinator Strategy and if necessary to provide recommendations to modification of management practice to maintain support to for other invertebrates while maintaining its positive focus on pollinators.

Where you'll study

Cambridge

Funding

This project is self-funded. Details of studentships for which funding is available are selected by a competitive process and are advertised on our jobs website as they become available.

Next steps

If you wish to be considered for this project, you will need to apply for our Biology PhD. In the section of the application form entitled 'Outline research proposal', please quote the above title and include a research proposal.